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Abstract

h_ this paper, efficient dynamic simulation algorithms for a system of in manipulators,

cooperating to manipulate a large load, are developed; and their performance, using two

possible forms of parallelism on a general-purpose parallel computer, is investigated. One

form, temporal parallelism, is obtained with the use of parallel numerical integration methods

[1]. A speedup of 3.78 on four processors of a CRAY Y-MP8 was achieved with a parallel

four-point block predictor-corrector method for the simulation of a four manipulator system.

These multi-point methods suffer from reduced accuracy, and when comparing these runs

with a serial integration method, the speedup can be as low as 1.83 for simulations with the

same accuracy. To regain the performance lost due to accuracy problems, a second form of

parallelism is employed. Spatial parallelism allows most of the dynamics of each manipulator

chain to be computed simultaneously. Used exclusively in the four processor case, this form

of parallelism in conjunction with a serial integration method results in a speedup of 3. 1 o1_

four proce,_sors over the best serial method. In cases where there are either" more processor._

available or fewer chains in the system, the multi-point parallel integration methods mv

still advantageous despite the reduced accuracy because both forms of parallelism cart then

combine to generate more parallel tasks and achieve greater effective speedups. This paper

also includes results for these cases.

1. Introduction

With increases in the structural complexities of today's systems, such as multiple lnanil)-

ulators, multilegged vehicles, and flexible robots, parallelization of the dynamic algorithms

for these systems must be considered in an effort to improve computational rates. With

significant speedups over previous implementations, real-time performance or graphic ani-

mation would make man-in-the-loop remote control of these systems feasible [2]. And with

super-real-time simulation (computing seconds of motion in milliseconds), an entirely new

approach to on-line robotic control using predictive simulation for planning is within range

[3]. One promising area of research which is striving to achieve these computational rates

focuses on the use of parallel algorithms.

In previous work, fine-grain parallel algorithms have been developed for robot dynamics

computations. Some require the use of special-purpose architectures to implement the fine-

grain parallelism of the computations required for a single-chain system [4, 5, 6, 7]. Others

decompose the algorithm into groups of concurrent tasks that are scheduled on a number of
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tightly coupled parallel processors to produce speedup [8, 9]. All of these algorithms, while

designed to perform well on specific parallel architectures, are usually much less efficient
when implemented on available general-purpose parallel machines with a limited number of

processors. These systems were not designed to handle the large amount of interprocessor
communication and synchronization that is required by the fine-grain tasks.

In our work, parallel algorithms which run efficiently on existing general-purpose parallel

computers are investigated. In the initial stage of this research, the dynamic algorithms

required to simulate a single, open-chain robotic manipulator were effectively parallelized

Ill. The approach used a parallel block predictor-corrector integration method to achieve
a temporal parallelism which enabled the forward dynamics problem to be computed for

multiple points in time simultaneously. In this paper, the work is extended to simulate
systems of multiple manipulators that are cooperating to manipulate a large load. In this

case, a second form of parallelism which corresponds to the system's structural parallelism

is explored. Called spatial parallelism, it allows most of the dynamics of the in(lividuM
chains to be computed in parallel as well.

This work shows that there are various costs associated with the two forms of paral-

lelism which affect their efficiency. With temporal parallelism, the accuracy of the parallel

integration methods is lower than the corresponding serial methods. As a result, smaller
stepsizes must be used, and hence, more computation must be performed with the tempo-

ral parallel methods to achieve the same accuracy. With spatial parallelism, most of the

dynamics may be computed in parallel; however, a serial portion of the algorithm which

computes the dynamics of the common load reduces the overall efficiency of this parallelism
as well. The advantage of these methods is that they may be combined by implementing the

spatial parallelism within each parallel integration task to gain even greater speedups. Our
results show the effects of reduced efficiency of both methods and how they are coml)ined

to gain the greatest speedups on varying numbers of processors.

In the following section, the algorithm to simulate the multiple manipulator system
is developed. In this development, the dynamics used in the previous work for a single

manipulator are extended and the spatial parallelism in this algorithm is presented. In

Section 3, the block predictor-corrector integration methods are presented which provide
various amounts of temporal parallelism in the simulation problem. Section 4 discusses

how both forms of parallelism are combined and implemented on a general-purpose parallel

computer. This algorithm is then implemented on the CRAY Y-MPS/864, and the speedup

results are given in Section 5 for various configurations of the simulation system including

spatial parallelism only, temporal parallelism only, and a combination on various numbers
of the CRAY's processors. Finally, a summary and conclusions are presented in Section 6.

2. Parallel Algorithm for Multiple Manipulator Dynamic Equations

In this section, an efficient dynamic simulation algorithm for a multiple, closed-chain

manipulator system is developed, and the spatial parallelism in the algorithm is investi-

gated. The system contains m manipulators, each with N degrees of freedom, that are
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rigidly graspinga commonload, calledthe referencemember.Eachsimple,closedchain
(manipulator)isgovernedby thedynamicequationsof motionfor asinglechain.Nmnbering
the chainsin the system1throughm, the equation for each chain is given as follows:

rk = Hk(qk)/_k + Ck(qk,/lk) + Gk(qk) + jT(qk)fk for all k = l,...,m, (1)

where

"7"k

qk, Ok, iik
Hk

Ck

Gk

Jk

fk

N x 1 vector of torques/forces of the joint actuators,

N x 1 vectors of joint positions, rates, and accelerations,

N x N symmetric, positive definite inertia matrix,
N x 1 vector specifying centrifugal and coriolis effects,

N x 1 vector specifying the effects due to gravity,
6 x N Jacobian matrix, and

6 x 1 force exerted by the tip of chain k on the reference naember.

Tile "for all" in Eq. (1) indicates that the equation may be computed for all chains in parallel

provided the required quantities are known. Since we are interested in the solution to tile
Forward Dynamics (or simulation) problem, the state of the system, consisting of joint

positions and rates, and the input joint torques/forces are given. The joint accelerations for"
each chain must then be computed. Lilly and Orin [10] present an efficient serial algorittun

for Forward Dynamics which is the basis for the parallel implementation used in this paper.

By grouping some terms from Eq. (1) and solving for the joint accelerations, we obtain

the following equation:

iik = iikop,, - H/.1JTfk for all k = 1,...,m, (2)

where iikop,, is the vector of joint accelerations for chain k if it were not contacting the
reference member causing the tip force to be zero. This is called its open-chain solution
which was implemented in [1]. Note that this quantity, as well as H/. _J/,depends only on the

system state and input joint torques/forces and may be computed from known quantities.

An equivalent operational-space formulation for the dynamics of a closed-chain manip-

ulator can be found by using the following relationship:

xk = Jk_lk, (3)

where _¢k is the Cartesian velocity of the tip of the manipulator. Taking the time derivative

of both sides yields the equation for the closed-chain acceleration of the tip:

5tk = Jk/lk +ak/ik, (4)

and substituting from Eq. (2) yields the following:

irk = xJ,op_ - Ak-lfk, for all k = 1,...,m, (5)

where

Xkop,,, = J'kflk + Jkilkop_,, and (6)
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Ak=' -1 (7)

The quantity, _kop_., is the acceleration of the tip of chain k if it were open, and Ak is the
operational space inertia matrix [11]. Both quantities may be computed given the current

state of the system and the input. The physical interpretation of Ak is an inertial quantity
which combines the dynamic properties of the chain and projects them to its tip. It is

the physical resistance that is "felt" when a force is exerted on the tip, and it defines the

relationship between the force that is applied to the tip, and the resulting acceleration of

the tip of the chain, _k. The advantage to using these operational space quantities is that

the matrix sizes are constant regardless of the number of degrees of freedom in the chain.

With the chains attached with a fixed grip to the reference member, the accelerations

of the tips of each chain, at an appropriate point attached to the end-effector, are the same
and are equal to the reference member acceleration, at. As a result, Eq. (5) can be rewritten
as follows:

ar = Xko,,, - Ak-lfk for all k = 1,...,m. (s)

Now the dynamic behavior of the reference member can be determined using a sl)atial

force balance equation. This states that the sum of the spatial forces exerted by the tips of

the chains and any other external forces (including gravity) is related to the acceleration of
the reference member through its inertia. This may be written as follows:

_fk+g_ = Irar+bT, (9)
k=!

where

gT 6 x 1 vector specifying the force of gravity exerted on the reference member,
a_ 6 x 1 acceleration vector of the reference member,
Ir 6 x 6 spatial inertia of the reference member [10],

and the last term, b,, is a spatial vector specifying the bias force due to the spatial velocity

of the reference member.

In this work, we also assume that the chains are not in singular configurations, and

consequently, all of the A_-1 matrices are non-singular. Therefore, the unknown force terms,
fk, may be isolated in Eq. (8) and substituted into Eq. (9). After collecting terms, the

following equation results:

I_ + Ak a_ = gr - b_ + Y_AkJ[kop_, (10)
k=l k=l

This equation states that the sum of all the inertias of the system multiplied by the reference
member acceleration is equal to the sum of all the forces that are exerted on the reference
member. The acceleration term, a_, may now be determined from this linear system of
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chain k- 1

OCDk-I

chain k

Open-Chain Dynamics (OCD k)

InverseDynamics I Inertia Matrix/Jaeobian

Open-Chain Operational Space
Acceleration Inertia Mawix, A
Equation (6) Equation (7)

------ ; --7------

ference Member Acceleration (RMA)

Equation (l 0)

CCDk_I Closed-Chain Dynamics (CCD k)

Tip Forces

F_uatio, (8)

Closed-Chain Accelerations

Equation (2)

........ __m___

Figure 1: Closed-Chain Dynamics Algorithm.

chain k+l

OCDk+l

CCD k+1

equations using any linear system solver (in this cue Cholesky decomposition can be used).

Finally ar is substituted back into Eq. (8) to determine the tip forces, fk, on each chain and

this call then be used to determine the joint accelerations from Eq. (2).

The flowchart in Figure 1, outlines the steps in the algorithm to compute the desired ac-

celerations. This constitutes the "derivative computation" which uses the state information

that is provided by a numerical integration routine. The additional computation required

for the closed chain dynamics that were not present in the open-chain algorithm used in

[1] is indicated with the appropriate equation numbers except for the computation of the

manipulator Jacobian. With slight modification to the inertia matrix routine that was used

in [1], this matrix may be computed as well. The algorithm for this computation can also

be found in [12]. Note that the Open-Chain Dynamics (OCD) and Closed-Chain Dynam-
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(m)

i
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I
i

I CCD_ ]
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Figure 2: Spatial Parallelism in Multiple-Chain Dynamic Equations (Serial RMA Compu-

tation).

ics (CCD) blocks are repeated for each chain in tile system, while the Reference Member

Acceleration (RMA) is performed once for a given derivative evaluation. This iml)lies that

the OCD and CCD computations for each chain may be executed in parallel.

Figure 2 shows how this algorithm, along with a numerical integration method, would

be implemented oll a general-purpose parallel computer. The CS (Compute State) block

consists of the integration method that is used to compute the state of the required chain,

and will be discussed in the next section. A processor synchronization is required after the ,

parallel OCD computation in order to collect the chains' operational space inertia matrices

and open-chain accelerations before the serial RMA computation is performed. In Figure 2

this is shown as a barrier which holds the parallel tasks which have completed the OCD

section until all m of them have finished. After the serial computation is completed by one

processor, it signals the other processors to continue with the parallel CCD computations.

This is accomplished by posthlg an event signal for which the other processors are waiting.

This computation can be modified to remove the event synchronization as shown

in Figure 3. This is accomplished by allowing each task to maintain its own "copy" of the

reference member information and perform the same computation on all of them. While

this introduces redundant computation, it can actually reduce the wallclock time because a

costly synchronization has been removed and the same time that was spent waiting for one

processor to perform the RMA calculation is now used to perform it on all of the processors.

This algorithm is then used within the framework of various parallel integration methods
that are described in the next section.

272



Processor Number (Chain):
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(m)

CS m

OCD.,

I

il R?,
[ CCD l

I I ,I

synchronization barrier ]

Figure 3: Spatial Parallelism in Multiple-Chain Dynamic Equations (Redundant Parallel

RMA Computation).

3. Parallel Integration Methods

Many different algorithms exist to perform numerical integration. One set of algorithms

which has shown in the past to be readily parallehzable are predictor-correcter methods.

The standard serial algorithm, commonly abbreviated PECE, consists of two pairs of steps

which correspond to the letters of the abbreviation. The steps consist of Predicting the next

state and Evaluating tile derivative based on this prediction, and then Correcting the state

with a corresponding derivative Evaluation. The derivative evaluations required in both

steps to determine the accelerations were presented in the last section, and the methods for

predicting and correcting the states are described here.

In this paper, fifth-order methods are used because they provide an adequate tradeoff

between accuracy, which tends to increase with order, and stability, which tends to decrease

with order. Figure 4 shows the quantities needed and computed in both steps of the serial

method. This method, usually called PECES, will be referred to as B1PC5 in the rest of

this paper to indicate a one-point block method which utilizes fifth-order predictor-correcter

formulas. The predictor step, shown in Figure 4(a), uses a linear combination of five past

derivative values, f-a,---, f0 (hence it is fifth-order) and the state at the most recent point

in time, Y0 to predict the state of the system (joint and reference member positions and

rates) at the next point in time, ylp. With this, the algorithm in the previous section can

be used to compute the derivative (joint and reference member accelerations) at this point,

f_, which is based on the predicted state. To correct the state in the second step of the
method, the quantities shown in Figure 4(b) are used. In this step, the "oldest" derivative

value is dropped and the linear combination used to compute the corrected state, y_, now

includes the new predicted derivative value. The same state quantity, Y0, is used rather
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(b)

Given:

Computed:

f-3 f-2 f-! Yo,fo flp

Yl,f_

Figure 4: Serial B1PC5 Integration: (a) predictor step, (b) correcter step.
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Computed: c c c fc cYI' fl Y2' f2 Y3' 3 Y4" f4

Figure 5: Four-Point Parallel B4PC5 Integration: (a) predictor step, (b) correcter step.

=

than tile predicted one for reasons of stability and accuracy of tile method. Finally, tile

corrected derivative value is computed using y_. Then in the next iteration of the method,

tile values are shifted and four old derivative values and the new corrected derivative and
state values are used.

A parallel version of this method called the block predictor-correcter method was first

formulated by Birta and Abou-Rabia [13] and used in our previous work [1]. Tile fifth-

order version of this method, B4PC5, is shown in Figure 5. In this method, a block of

four points are computed in parallel during a single iteration. Each processor is responsible

for computing the required quantities at a single point in the block. In the predictor step

shown in Figure 5(a), each processor computes the predicted value for its point using the

same information (but with a different linear combination) in parallel. Then each uses

E
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Figure 6: Two-Point Parallel B2PC5 Integration: (a) predictor step, (b) correcter step.

the dynamics algorithm to compute the derivative at its point in parallel as well. In the

correcter step, an entire block of old derivative values are discarded in favor of the predicted

ones as shown in Figure 5(b). Once the processors have swapped the derivative information

from the predictor step, correction and subsequent derivative evaluation can again be (lone

in parallel.

The B4PC5 method offers a way to simulate the system using four processors in parallel.

Because the method extrapolates farther from the known values in the predictor step, it

is subject to larger errors for a given stepsize. Also, when both forms of parallelism are

combined in the next section, the number of parallel tasks may exceed the number of

processors available. For these reasons, we developed a two-point parallel method called
B2PC5 which lies between the two methods described thus far in terms of parallelism and

accuracy. This method is shown in Figure 6. Instead of predicting four points as in the

B4PC5, it only predicts two new points and thus can be implemented in parallel on two

processors. The coefficients for both steps of this method were computed using the method

of undetermined coefficients so that the resulting method is fifth-order as well.

The structure of the temporal parallelism for a single block of the parallel integration

methods presented in this section is shown in Figure 7. The PE (compute Predicted state

and Evaluate the derivative) and CE (compute Corrected state and Evaluate the derivative)

blocks in this figure make up the predictor and correcter steps in these methods along with

the derivative evaluations described in the previous section. There are p parallel tasks which

correspond to the number of block points computed by the method during a single iteration.

A single column of blocks represents the computation of the solution of the entire m-chain

system for a specific point in time on one of p processors. Barriers are used to synchronize

these parallel tasks after each derivative evaluation so that state and derivative information

may be exchanged. An event is also used so that a small amount of serial processing may

be performed by a single processor before starting the next integration iteration.
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ProcessorNumber(Block Point):

(i)
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i
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(p)

P5 r

CZ_F

wait for event [

Figure 7: Temporal Parallelism in Dynamic Simulation.

4. Implementation of Combined Parallelism

Both forms of parallelism, spatial and temporal, can be combined by introducing the

spatial parallelization of the derivative evaluations in Figure 3 into the individual PE/CE

computational blocks of Figure 7. In this case, the CS (Compute State) blocks of Figure 3

become the predictor or corrector equations of the desired integration method. A modi-

fication is then made to decrease the required synchronization between all of the tasks to

improve the performance. This modification is made to the barriers and events associated

with tile temporal parallelism. Because the integration of the state of each chain depends

only on its own values at all of the block points, the temporal barriers are broken apart

so that each one only synchronizes with the processors associated with the same chain.

In some sense, these temporal synchronization points have been spatially parallelized. In

addition, the serial Shift Blocks task can also be spatially parallelized.

Figure 8 shows the resulting implementation which consists of as many as mp paral-

lel tasks. Also included in this figure are the synchronization commands that are used in

the implementation on the CRAY Y-MP8/864. The simulation code was written in FOR-

TRAN (Version 5.0 running under UNICOS Release 6.0) using macrotasking commands to

implement the parallelism. The BARSYNC commands correspond to the synchronization

barriers and the argument supplied to this command corresponds to the number of parallel

tasks that must be synchronized by it. Finally, the EVPOST-EVWAIT commands pro-

vide the mechanism by which certain processors are suspended while others perform serial

operations.

In order to examine the effects of various configurations on the parallelism (taking the
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I[ BARSYNC(m) l[

BARSYNC

BARSYNC(p)

BARSYNC(p)

BARSYNC,

[ BARSYNC(m)

EVWAIT

EVWAIT

EVWAIT

Figure 8: Structure of Combined Spatial and Temporal Parallelism.

number of integration block points, number of chains, and number of physical processors

into account), a mechanism was included in the implementation which allows the user to

specify the number of desired parallel tasks along both the temporal and spatial dimensions
of the simulation regardless of the number of chains and block points. These numbers are

denoted by rh and 15, respectively, and are used in place of m and p in Figure 8 when

referring to the number of actual parallel computational blocks. With this mechanism,

for example, the required computation could be paired off and a single processor could b(,
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Table 1: Speedup Results for B4PC5.

# Processors

Requested
1
4

8

Chain

Tasks,

1
2
4
2
4

Integration
Tasks,/3

T

(sec.) Sp
0.241 1.00
0.0637 3.78
0.0668 3.61
0.0731 3.30

0.0390 6.18
0.0417 5.78

responsible for the computations of two chains (or two block points, or both) instead of

just one. This would allow the computation of a larger system, in which mp exceeded the
number of processors, to be efficiently mapped to smaller parallel machines. In order to
maintain the load balance, however, the specified partitions in both dimensions should be

integer divisors of the total number of block points and chains, respectively. Results for
various partitions of the computation using this method are given in the next section.

5. Results

With the parallel algorithm described in the last section, a system consisting of four
PUMA 560 manipulators was simulated. A test trajectory with a duration of one second

was generated which consisted of lifting a 4kg object 0.8 meters straight up. Then an
appropriate joint torque profile was computed which, when applied to the joints of tlm

manipulators, would produce the desired motion. These torques were used as input into
the simulator, and the error in the final position of the reference member was used as a

measure of accuracy for the various integration methods. Only this value was reported for
brevity and also its accuracy was representative of the accuracy of the rest of the states in
the system.

The simulation was then executed using the B4PC5 integration method on I, 4, and

8 of the Y-MP's eight processors. Using the mechanism for partitioning the computation

among existing processors, the block point and chain computations were partitioned singly

(one chain and one block point per processor), in pairs (two chains and two blocks points),
all together, or any useful combination thereof. A fixed integration stepsize was used and

varied over a number of runs so that a profile of execution time versus error was produced.
To get a fair comparison of relative performance between the different integration methods
in later experiments, an estimate of the execution time, T, required to achieve an error of
l0 -6 meters was reported in Table 1.

Examining these execution times for a given number of processors, it can be seen that

they increased as the number of temporal parallel tasks, i5, decreased. When /3 is less

than four, the full amount of temporal parallelism provided by this integration metho(l
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Table2: AccuracyPerformancefor VariousConfigurations.

Processors
Requested

8

Chain
Tasks,fn

2
4

Integration
Tasks,/5

4
2

Block
Size

4
2
1
4

4
2
4
2
1
4
4
2

T

(see.)
0.241
0.152

0.117
0.0637
0.0668
0.0444
0.0731
0.0463

0.0377
0.0390
0.0417
0.0295

S v S_ ST
1.00 0.485 0.485
1.00 0.770 0.770
1.00 1.00 1.00
3.78 0.485 1.83
3.61 0.485 1.75

3.42 0.770 2.63
3.30 0.485 1.60
3.28 0.770 2.53
3.10 1.00 3.10
6.18 0.485 3.00
5.78 0.485 2.80
5.15 0.770 3.97

is not being fully utilized. As a result, increased numbers of redundant reference member

acceleration (RMA) calculations are being performed by each processor in an effort to avoid
the extra synchronization point that was discussed at the end of Section 2. Consequently,

the best speedups due to parallelization, Sp, were achieved by using the greatest amount of

temporal parallelism which was as high as 3.78 on four processors. Runs were also made

while requesting all eight of the Y-MP's processors and a speedup of 6.18 was still achieved

despite an inability to gain dedicated use of these processors in our multi-user environment.

When i5 was less than four, simulations using an integration method with a smaller block

size, such as B2PC5 or serial B1PC5, were also tried. Because these methods compute
fewer points per iteration, the cost that is incurred is an increased number of iterations

(and hence, parallel task synchronizations) than the B4PC5 method for a given integration
stepsize. However, the overall efficiency of these methods increased because they were more
accurate. This resulted in fewer iterations and less execution time for a given amount of

error. The complete set of results using the various integration block sizes as well as parallel

configurations is shown in Table 2.

In this table, Sp is the speedup for a given method over the serial runtime using the

same integration method. Since there is an accuracy loss associated with the larger block
methods a speedup due to algorithmic changes, S_, is also reported. This corresponds to the
amount of time relative to the B1PC5 method that is required by the methods to compute

the trajectory with a given error. Based on the serial results for the three integration
methods, the traditional serial method, B1PC5, took less than half the time to simulate

the trajectory to the desired accuracy as the B4PC5, and the performance of B2PC5 fell in
between. The last column shows the total effective speedup of the various configurations.

This is based on the time required for the method to simulate the trajectory to the desired

accuracy as compared to the best serial time which was exhibited by the B l PC5 method,
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and it is equal to the product of 5"p and 5'a. When compared with the best integration

methods the 5'p speedups obtained with the B4PC5 method must therefore be cut in about

one-half, and the B2PC5 speedups are reduced by approximately 23%.

Therefore, the best effective speedups were obtained using the integration method with

the smallest block size while partitioning the computation so that the number of parallel

tasks was equal to the number of processors. Since the system had four chains, the serial

B1PC5 method was the best on four processors and the resulting speedup was 3.1. On

eight processors, where the serial method could not be used and still have eight parallel

tasks, the B2PC5 method showed the greatest speedup at 3.97. From these results it wouhl

appear that the B4PC5 has no advantage. However, if a system with a smaller number of

chains is to be simulated, this method would allow a greater number of parallel tasks to be

generated than the other methods and would most likely exhibit the greatest speedup.

6. Summary and Conclusions

In this paper, two approaches for achieving effective parallelization for dynamic sim-

ulation on a general-purpose parallel computer were presented. One approach that was

discussed in [1] for parallel simulation of a single chain system was based on temporal par-

allelism achieved with the use of a parallel numericM integration method. In this paper, the

work has been extended to include multiple chain systems which introduce a second form

of parallelism. Called spatial parallelism, the form comes from the ability to compute the

dynamics of individual chains in the system simultaneously.

Various ways to use both forms of parallelism to the greatest advantage were investi-

gated. The greatest effective speedup from these methods was gained by partitioning the

computation into as many load balanced parallel tasks as possible while using the integra-

tion method with the smallest block size. This implies that the greatest amount of spatial

parallelism, and the most accurate integration methods should be employed.

With the general rule in mind, our results for the simulation of a four chain system

showed that the greatest speedup on four processors of the CRAY Y-MP8 was 3.1. This

was achieved with spatial parallelism only, and the use of the serial predictor-corrector

integration method. Even greater speedup was achieved on eight processors when rid]

spatial parallelism was used. In this case, a two-point parallel integration method was

used to achieve the desired amount of parallel tasks. And it appears that the four-point

integration method would be beneficial if sixteen processors are available.

An additional benefit to these forms of parMletism is that they do not preclude any of

the previous work mentioned in the introduction that dealt with the fine-grain parallel algo-

rithms for computation of the robot dynamics quantities. The special-purpose architectures

required could be set up in parallel and used in conjunction with the methods discussed

in this paper. The resulting combination of parallel computation could be thought of as

occurring in three dimensions, and shows promise for even greater speedups.
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